En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
En álgebra abstracta, el álgebra conmutativa es el campo de estudio de los anillos conmutativos, sus ideales, módulos y álgebras. Es una materia fundacional tanto para la geometría algebraica como para la teoría algebraica de números.[1] Los ejemplos destacados de anillos conmutativos incluyen los anillos polinómicos; anillos de enteros algebraicos, incluidos los enteros ordinarios ; y enteros p-ádicos.[2]
Se considera que el fundador real de la materia, en la época en la que se llamaba teoría de ideales, es David Hilbert, quien al parecer pensó sobre esta cuestión (alrededor del año 1900) como un enfoque alternativo a la entonces de moda teoría de funciones complejas. Este enfoque sigue cierta "línea" de pensamiento que considera que los aspectos computacionales son secundarios respecto a los estructurales. El concepto adicional de módulo, presentado de alguna manera en el trabajo de Kronecker, es técnicamente un paso adelante si se compara con trabajar siempre directamente en el caso especial de los ideales. Este cambio se atribuye a la influencia de Emmy Noether.
Dado el concepto de esquema, el álgebra conmutativa es pensada, comprendida, de forma razonable, bien como la teoría local o bien como la teoría afín de la geometría algebraica.
El estudio general de anillos sin requerir conmutatividad se conoce como álgebra no conmutativa; es materia de la teoría de anillos, de la teoría de la representación y también de otras áreas como la teoría de las álgebras de Banach.